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SUMMARY 

This paper investigates the problems involved in the numerical simulation of free surface wave motions 
and surface wave effects on marine structures. Various approaches that might be taken in meeting these 
problems are discussed, and their relative advantages and disadvantages are considered. One particular 
approach combines a Lagrangian formulation of the governing equations, a triangular grid and a 
finite-difference solution procedure. Since this approach has some distinct advantages in the numerical 
calculation of fluid flows which include a free surface, it formed the basis for the development of one 
particular computer code, SPLISH. Sufficient progress has been made with the SPLISH code to 
demonstrate the attractiveness of numerical calculations for wave flow problems. Recent computational 
results demonstrate that realistic time-varying local flow fields, pressures and forces on and near 
structures such as a half-cyclinder on the ocean floor can be determined from numerical calculations for 
certain conditions. Good agreement is found in comparison of the numerical results from SPLISH, 
recent linear wave Green's function and fifth-order asymptotic solutions for wave motion over a 
bottom seated half-cylinder, and an experimental simulation in a wave channel. 
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INTRODUCTION 

The effects of surface waves on structures in the ocean are of considerable practical interest, 
but until recently the complexity of this flow-structure interaction has limited most theoreti- 
cal studies to  idealized flows and structural geometries. A primary contribution to the 
complexity of the wave-structure problem is, of course, the presence of the free surface. 
Also, the structure may be submerged in water of intermediate or shallow depth, so that the 
ocean bottom effect is important and must be included in the solution of the problem. 
Analytical and numerical solutions, limited primarily to small-amplitude linear waves, have 
been obtained in two and three dimensions for a number of problems relating to  wave flows 
over cylindrical forms of various cross-sections and orientations. A review of these solutions 
is given by Naftzger and Chakrabarti.' 

A research programme has been under way at the Naval Research Laboratory to  develop 
numerical methods for predicting the effects of surface waves on submerged and partially 
submerged structures in the ocean in the hope of eventually removing the linearizing 
assumptions. One phase of this research has been concerned with computations using a 
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Lagrangian finite-difference code called SPLISH which was developed at NRL.2,3 Other 
continuing efforts at NRL are devoted to applications of finite element and boundary 
element methods to the problem of wave flow over obstacles. 

The first section of this paper discusses the appropriate choice of a numerical method to 
simulate free surface flow problems. An overview is given of the numerical techniques 
available for the solution of this class of problems. The advantages and limitations of these 
techniques are discussed and compared in terms of the physical problem to be studied and 
the accuracy and efficiency required of the final computer code. This is followed by a more 
detailed presentation of the numerical algorithms that are implemented in the computer code 
SPLISH. 

The next section presents numerical results which have been obtained for several ben- 
chmark cases of surface wave motion over a bottom seated half-~yl inder .~,~ These results are 
compared with both linear and fifth-order potential flow solutions to the problem. All of 
these results are then compared with experimental measurements of the wave pressure field 
about the half-cylinder which were obtained in a wave channel at NRL. The agreement is 
good between the numerical, potential flow and experimental results for conditions of low 
wave reflection from the cylinder. Although the numerical method presently is applicable 
only to a limited range of wave parameters, water depths, and structural dimensions, the 
results achieved thus far do show the flexibility and power of the Lagrangian formulation. 
The final section of this paper summarizes the results achieved thus far, the problems 
encountered, and the outlook for future progress. 

THE NUMERICAL METHOD 

Numerical methods 

The accuracy of any numerical method chosen to study wave-structure interactions will be 
limited primarily by that method’s accuracy in formulating boundary conditions. This is due 
to the presence of the free surface which dominates the evolution of the fluid flow, 
particularly for wave-breaking, surging or slamming. It is also due to the possible movement 
of the submerged or partially submerged structure in response to the free surface motion, an 
interaction which can both generate free surface waves and absorb energy from them. 

The free surface boundary condition is quite complex, since it is non-linear in the near 
region and radiative in the far region. The waves generated by wave-structure interactions 
propagate both upstream and downstream, and these radiating waves must pass through the 
computational boundaries without affecting the transient, non-linear behaviour of the free 
surface in the interior of the region. 

These difficulties limit the applicability of an Eulerian formulation for such complex flows. 
In a general Eulerian representation the position of a surface or interface is only known 
within one grid spacing. Fluid diffuses across the boundary and the interface cannot be 
correctly advanced in time. Mixed Eulerian-Lagrangian codes rectify this dilemma by 
tracking the motion of the surface in a Lagrangian fashion on the sub-grid scale. This 
generally entails special techniques to update additional Lagrangian vertices or markers 
which then flow with the interface. However, these specialized techniques are computation- 
ally inefficient for multiple surfaces, and generally fail in tracking the evolution of a surface 
to  a multiply connected configuration. 

The necessity of an accurate treatment of boundary motion makes a Lagrangian formula- 
tion of the fluid equations of motion particularly attractive. The strength of the Lagrangian 
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Figure l(a). Grid connections for a regular mesh; (b). A distorted mesh formed by shear motion of the central 
column relative to its neighbours. 

formulation resides in the fact that fluid elements are advected with the flow. Grid points 
which define surfaces remain at those surfaces and permit the maximum accuracy in formula- 
tion of boundary conditions. The variation of grid resolution which must occur in Eulerian 
schemes as surfaces pass through cells is also alleviated and the numerical diffusion across 
boundaries minimized. Since the grid moves with the fluid, the non-linear convective terms 
are not present in the Lagrangian formulation, resulting in higher accuracy and less stringent 
resolution requirements. 

However, the strength of the Lagrangian approach is also its weakness. The advection of 
the mesh with the flow leads to large mesh deformations and a corresponding decrease in 
accuracy in both finite difference and finite element methods. To illustrate the effect of grid 
deformation let us examine first- or second-order accurate finite-difference methods. The 
mesh points commonly used to evaluate gradients and Laplacians are shown in Figure l a  for 
a regular grid. Figure l b  illustrates a simple grid distortion produced by a shear flow in which 
the center row of vertices has moved downward relative to the vertices to each side. A 
well-formulated Lagrangian finite-difference algorithm will properly account for the angles 
between grid lines and the variable mesh spacing produced by this distortion. Nevertheless, 
numerical approximations based on this mesh can still be grossly in error because differences 
no longer involve neighbouring vertices. Mesh points now closer to the central vertex do not 
enter in the approximation, while those further removed do. 

As shown in Figure 2, higher order approximations may lead to even greater error. Figure 
2(a) shows the vertices commonly used in higher-order approximations. Figure 2(b) illus- 
trates that these approximations on a distorted mesh may include vertices which even further 
removed from the central vertex while neglecting other vertices which lie closer. In other 
words the distorted mesh cannot be used self-consistently to improve the accuracy of the 
approximation. The problem can be resolved only by differencing over the appropriate 
vertices. That is, the mesh distortion must be reduced. This same conclusion holds true for 
the finite element method. Whether triangular or quadrilateral elements are chosen the 
accuracy on the deformed grid must be diminished regardless of the basis functions, simply 
because the grid joins the wrong vertices. 

( a )  ( b )  . . . . . .  

. . 
Figure 2(a). Vertices used in higher order approximations; (b). The vertex positions on the mesh distorted by shear 
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Figure 3(a). A quadrilateral mesh about a shear interface; (b). Distortions induced in the Lagrangian mesh by the 
shear. A reconnection has been made to join nearest neighbours for a single vertex 

The traditional solution to this problem has been to perform an Eulerian rezoning phase 
which allows the mesh to pass through the fluid. There are several objections that can be 
made to this solution to mesh distortion. The first is that the result of a rezoning phase is the 
introduction of artificial diffusion as well as a reduction in distortion. Fluid is allowed to 
diffuse through the mesh as it is repositioned. Secondly, the rezoning phase phase may be 
less accurate than needed. In shear flows such as illustrated in Figures l(b) and 2(b) accuracy 
can be maintained through rezoning only by an Eulerian motion counter to the fluid flow. If 
the shear persists, the Eulerian motion will eventually have to  be equal and opposite to the 
advective, Lagrangian motion. In such cases the flow calculation is Eulerian. Unless the 
algorithms adopted for rezoning approach the accuracy available for finite-difference approx- 
imations of the advective terms on an Eulerian mesh, the accuracy of the calculation is 
necessarily degraded and even more diffusive than a purely Eulerian calculation. A third 
objection to rezoning is that it is useless in fluid flows which force changes from simply- 
connected to  multiply-connected regions, as in the case of wave-breaking. In such cases no 
amount of rezoning can prevent mesh tangling and collapse of cells. A final objection is that 
it is not a definitive solution. A grid deformation must force a less accurate approximation. 
Rezone algorithms generally seek to  preserve a reasonable appearance of the grid and may 
obscure the question of what is the best approximation possible given the current Lagrangian 
vertex positions. That is, under the guise of preventing inaccuracies in the approximations, 
they may become the very vehicle for preserving them. 

The solution that rezoning offers to  gird deformation is vertex motion to rectify the 
distortions. An alternative solution is illustrated in Figure 3.  A section of a quadrilateral 
mesh about a shear layer is shown in Figure 3a. A Lagrangian calculation quickly leads to 
the mesh shown in Figure 3b, in which mesh connections about the layer no longer join 
neighbouring vertices. In this Figure one grid line has been reconnected to show the 
connection which is now appropriate. For a periodic system all stretched grid lines could be 
reconnected, thereby restoring the mesh to its original configuration without moving any 
vertices. In general, all such reconnections either are inappropriate or cannot be made due to 
boundaries, so that one triangular and one pentagonal cell remain. Therefore reconnection 
on a quadrilateral grid cannot by itself resolve the problem of distorted grids. 

On a triangular mesh, however, there are no  such complications. As shown in Figure 4, a 
reconnected grid line on a triangular mesh still results in two triangular cells. This technique 
was first used in a computer code by Crowley5 and represents a very attractive alternative to  
rezoning for triangular grids. There is no Eulerian vertex motion. The full accuracy of the 

Figure 4(a). A triangular grid formed by drawing diagonals through the mesh of Figure 3(a), (b). The reconnection 
of Figure 3(b) on a triangular mesh 
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Lagrangian technique for advancing grid positions is always used, and the advection terms 
need never be evaluated. Although a grid line must be repositioned, fluid does not pass 
through the mesh in the previous sense since vertices remain stationary, and totally 
non-diffusive reversible algorithms are possible. Most importantly, the solution is definite. 
The simplicity of the technique is particularly suited to considerations of how best to 
construct approximations given the current grid positions. As shown below, such questions 
result in very attractive conservative algorithms for the reconnection operation. 

The technique is similar to rezoning in two ways. First, it does nothing to  enhance the 
accuracy of the approximations on the distorted grid before the remedial action is taken. As 
shown below, the decision of when to reconnect is made in a straightforward manner. But, as 
in a rezone method, the approximations made over the distorted mesh are, none the less, less 
accurate. The question of accuracy will be addressed in more detail in the following section. 
The solution of reconnecting is also similar to  rezoning in that it cannot by itself solve the 
problem of fluids evolving into multiply-connected regions or of flows at stagnation points. 
However, it does aid in the remedy. The number of grid lines meeting at any vertex can be 
reduced to three by reconnections, with those three neighbouring vertices forming a triangle 
which surrounds only that vertex. If the fluid is accumulating vertices locally, then that 
central vertex can be eliminated with the three grid lines, leaving only the surrounding 
triangle. The result is the desired decrease in resolution and the avoidance of the formation 
of thin, narrow triangles near the point of converging flow. Conversely, a vertex may be 
added inside any triangle or along any line simply by providing the necessary grid lines to 
other vertices within the affected triangles. Subsequent reconnections will link the added 
vertices to their neighbours. In this way the transition to multiply connected regions and the 
flow near stagnation points can be handled smoothly merely by decreasing or increasing 
resolution where appropriate. The combination of grid line reconnection with vertex addition 
and deletion therefore provides a means of smoothly restructuring the grid without recourse 
to Eulerian vertex movement. 

The price that is paid for this flexibility is the loss of any global ordering for the vertices. A 
reconnecting grid has no fixed indexing. Partly because of this difficulty general triangular 
grids have not received the attention given to regular grids and are not as well understood. 
Solution procedures for irregular grids are currently more costly and the range of available 
numerical techniques is much more restricted. For example, in a finite-element scheme a 
reassembly of the system matrix is required whenever the grid is required whenever the grid 
is restructured. Because of the cost of this step computationally, the finite element approach 
was not considered for this problem. Nevertheless, the approach finally adopted shares many 
features of finite elements, particularly in the use of integral methods in maintaining 
conservation. Since a minimization over the entire mesh is avoided in the technique 
described in this paper, a system matrix is not required and only local changes are necessary. 
Much of tne later discussion on  evaluating the accuracy of a restructuring mesh is directly 
related to finite element meshes, and the results carry over for implementations in finite 
element grid initializers. 

Fortunately, grid alterations can be accommodated in finite-difference schemes with 
relatively mild calculational repercussions. For that reason we will focus on finite-difference 
techniques from this point on. The relative lack of experience in differencing over general 
triangular grids has historically led to some mistaken impressions, two of which are 
important enough to address directly-their ‘stiffness’ and lack of accuracy. 

The use of the work of ‘stiff’ to describe triangular grids seems to have evolved from an 
improper placement of physical variables on the mesh. In a quadrilateral mesh, there is a 
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Figure 5. An isolated vortex about a central vertex. Velocities of neighhouring vertices reach a maximum at some 
radius from the central vertex and diminish further out 

one-to-one correspondence between cells and vertices. For example, each quadrilateral cell 
may be associated with its upper right vertex. The vertices remaining lie on boundaries, and 
their variables are specified by boundary conditions. If that same quadrilateral mesh is 
subdivided into a triangular mesh by drawing diagonals through each cell, it is clear the 
correspondence between cells and vertices is destroyed. The number of vertices is the same, 
but there are twice the number of cells. On the quadrilateral mesh it is attractive to assign 
pressures as cell-centered quantities, since pressure forces are easily calculated. Such a 
positioning on a triangular mesh can be disastrous. Twice as many pressures must be 
specified than in the well-formulated, quadrilateral case. Numerically, an iterative solution 
for pressures would converge extremely slowly, and in this sense the system of differenced 
equations would be stiff. If the idea of conserving cell size for incompressible flows is also 
carried over to triangular grids, the algorithms are stiff in a much worse sense. A vortex is 
shown in Figure 5 ,  where the arrows designate local fluid velocities. All velocities are about 
the vortex centre, and there exists a maximum speed at some radius from the centre. The 
triangular grid that is shown will therefore eventually invert, since the vertex with the maximum 
speed must pass between the two more slowly moving vertices. If triangle areas are 
conserved, a pressure must build up to resist this tendency until the speeds of all vertices are 
commensurate with cell area conservation. The presence of such a pressure component at 
any stage of the calculation is totally non-physical, since it arises from improper placement of 
variables and is directly opposed to the physical flow. Such behaviour is definitely ‘stiff since 
the solution will tend to resemble solid body rotation rather than vortex motion. Such 
‘stiffness’ of triangular grids seems to be due entirely to such improper differencing. 

The use of pressures defined on vertices will illustrate the second question, that of 
accuracy of difference schemes over a general triangular mesh. First, let us incorporate our 
rather novel placement of pressures in the one-dimensional case. There are both forward and 
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backward expansions of the pressure about point i ;  

ap 1 a2p 1 a3p 
piCl = pi +- Ax +- - Ax2+-- Ax3+ O(Ax4) a& 2ax2 6 ax3 

and 
ap 1 a2p 1 a3p 

pi-1 = pi -- AX +- - Ax2-- - A x3 + o ( a x 4 )  
axi 2ax2  6 ax3 

Of course the forward and backward difference approximations can be obtained directly 
from equations (1) and (2); 

and 

Both are only first-order accurate and can be viewed as cell-centred quantities. If, instead, 
equations (1) and (2) are subtracted, the result is 

ap 1 a3p 
pi+ 1 - pi-1 = 2 - AX + - --=j Ax3 + 0(Ax5). 

ax, 3ax  

The centred difference approximation is then 

which is second order accurate and vertex centred. For the case of variable mesh spacing, we 
can replace Ax by Ax’ in equation (2), so that equation ( 5 )  becomes instead 

aP 1 a2p 
axi 2 ax 

pi+ 1 - pi- 1 = - (AX + AX’) + - 7 (Ax2 - Ax’~)’(Ax~) (7) 

If we define an average mesh spacing 
___ 
Ax = (Ax + Ax’)/2 (8) 

and a mesh spacing change 

then 
SX = (AX’-  AX)/^ 

AX =G- SX 
Ax’ = G+ Sx 

or Sx is a measure of the deviation of the central grid point from the average position, i.e. 
the central position for equal grid spacing. Rewriting equation (7) we have 

which has an accuracy between first and second order depending on the relative sizes of Sx, 
Ax2 and  AX'^ and their coefficients. Second order accuracy can be obtained in general only if 
the grid is equally spaced. First order accuracy results only when two grid points coincide. 
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The result is first order accuracy but not in the grid spacing, but rather in the change in grid 
spacing. Therefore, for gradual grid variation, nearly second order accuracy results. If we 
rewrite equations (3) and (4) using primes also, then equation (11) can be rewritten as 

6Xi Axi +Ax: 

or, viewing the foward and backward differences as cell-centred quantities, 

6p” I,’=, (6p/6xi) Axi 
6Xi  C Axi 
-= 

where the index j sums over the approximations on either side of the ith vertex. That is, the 
central difference can be obtained by an ‘area’ weighted sum of the forward and backward 
differences. 

This result carries over directly to general triangular grids in two dimensions. We can 
define the pressure gradient there as 

where Vpi is the first order accurate, finite difference approximation to  the gradient which is 
evaluated at the jth triangle centroid, Ai is the triangle area, 2 is a unit vector in the 
direction of the neglected co-ordinate and the sum extends over the three triangle vertices. 
The analogue of equations (12) is 

where the index j indicates a sum over all triangles around the vertex i. For special 
geometries this centred difference approximation is second order accurate or higher. In 
general it is less than second order accurate, but performs reasonably closely to second order 
accuracy for a general mesh provided that the triangle areas are roughly equal. In that case 
the error is determined by a formula similar to equation (7), an algebraic sum of squared 
triangle altitudes. The worst that can be achieved is first order accuracy, which is obtained 
only in the degenerate case of a zero area triangle at the vertex. 

This implies that care must be taken in evaluating boundary conditions, but this task is 
alleviated by having the pressures specified at the boundaries. In a cell centred scheme, the 
pressures are located half a cell away, and boundary conditions, particularly at free surfaces, 
are more difficult to implement. Accuracy in the interior of the fluid is therefore diminished 
primarily by narrow triangles. As shown below, this restriction is not too serious for a 
reconnecting grid, since the grid can be made to reconnect to preserve regular triangles. In 
cases where this is not possible (near interfaces, for example), the addition or deletion of 
vertices can be used to regularize the mesh. 

The conclusion is that the ‘stiffness’ and ‘diminished’ accuracy of approximation on the 
triangular grid are both in large measure due to improper placement of physical variables on 
the mesh. Pressures as cell-centred quantities force not only a stiff solution, but make 
second-order accurate approximations difficult to  achieve. Two other comments should be 
made about equation (14). The first is that it can be used to recover all the usual gradient 
approximations for regular grids. An extension of the definition by taking the divergence of 
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both sides of equation (14) also yields all the usual Laplacian approximations (see below). 
The second feature of the equation is that the vertex pressure gradients can be viewed either 
as a sum over triangular gradients or in the more conventional way of a vertex sum. The 
former offers the possibility of vectorizing the equations, even though the mesh has no 
inherent order, a fact which greatly enhances the utility of the method for vector computers. 

NUMERICAL ALGORITHMS 

The computer code SPLISH is a two-dimensional Lagrangian fluid dynamics code for 
incompressible fluids which was developed in accordance with the philosophy of the previous 
~ e c t i o n . ~ . ~  The basic equations for incompressible fluid flow are 

dV 
dt 

p-= -Vp-pgjt 

and 
v . v = 0  

where the fluid density p, pressure p and velocity V are assumed to vary only with x and y. 
To ensure accuracy, equations (15) and (16) are supplemented by integral equations for 
conservation of mass, energy and momentum. With pressures specified at the vertices, Vp is 
evaluated over triangles, and equation (15) can easily be updated implicitly or explicitly if 
velocities are considered to be triangle-centred. This placement of velocities as cell quantities 
and pressures at vertices is apparently unique to SPLISH and is the direct opposite of the 
usual placement. In what follows the subscript i will denote a vertex-centred quantity and j a 
triangle-centred quantity. In SPLISH the integration of velocities uses a split step algorithm 
whereby the velocities are advanced one half timestep (equation (17)), the grid is advanced a 
full timestep (equation (19)), and then the velocities advanced forward the other half timestep 
(equation (21)). 

The vertex velocity V: appearing in equation (18) is obtained from the area-weighted Vy 
from the previous iteration, 

The advantage of using triangle centred velocities is the ease in conceptualizing and 
expressing conservation laws. Because of the paucity of experience in formulating algorithms 
over a general triangular grid, we employed the control volume approach, which uses an 
integral formulation to derive the difference algorithms. The control volume is defined by a 
cell, centred about each vertex. The boundaries of the vertex cell can be defined by 
apportioning each triangle equally to each of its vertices. One way of achieving this 
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Figure 6. A definition of a vertex cell for a general triangular mesh 

partitioning is to draw bisectors from the mid point of each side to the opposite vertex, as 
shown in Figure 6. The side bisectors meet at the centroid of the triangle and divide its area 
into six smaller equal area triangles. The areas of the two small triangles adjacent to each 
vertex are assigned to that vertex. The vertex cell of Figure 6 is constructed by summing over 
all the surrounding triangles. Therefore the area of a vertex cell may be defined as 

A, = c $4 (23) 
1 

where the sum extends over all adjacent triangles, exactly as in equation (14). With this 
definition equations (14) and (22) become 

and 

Since triangle velocities are constant over triangles, conservation integrals about each vertex 
cell are easily evaluated. These conservation integrals are used consistently to ensure 
conservation during all phases of the calculation. For example, it is easy to show that the Vp 
and gravity terms cannot alter the vorticity since numerically VxVp=O and gravity is a 
constant. Only the (Vp,)/p, term can change vorticity, exactly as dictated by the physics. 
Therefore equations (17) and (21) advance velocities in keeping with the physically correct 
changes in vorticity under this scheme and placement of variables. 

However, for a Lagrangian code, this is not enough. The price that is paid for the 
increased accuray in not differencing the advective terms is a change in the value of the 
conservation integrals during the vertex position update in equation (19). For any Lagran- 
gian scheme, if the velocities are correctly advanced over the old grid, updating the grid may 
alter again the integrals about each cell. In SPLISH, conservation is ensured at this step by 
the transformation R in equation (20). The transformation is derived by considering the 
circulation about each vertex cell and calculating the changes in triangle velocities which are 
necessary to  conserve vorticity and divergence about each cell. In this way vorticity is 
identically conserved in equations (17)-(21), i.e. for the full advancement of physical 
variables. Yet for Lagrangian calculations which distort the grid, there is still needed a 
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further check on conservation during the grid restructuring step. As will be described below, 
exactly the same integrals about each cell are used in the grid reconnection and vertex 
addition and deletion steps to ensure conservation. The end result is exact conservation for a 
full timestep always using the same conservation integrals for each stage of the calculation. 

The pressures p: in equation (21) are derived from the condition that the new velocities 
Vr should be divergence free at the new timestep, satisfying equation (16). The pressure 
Poisson equation is derived from equation (21) by setting (V . Vy)t = 0, to obtain pressure p: 
such that 

6t 1 
- (v . - (vp);) = (V . v;/2)i. 
2 Pi i 

The right hand side of equation (26) is the numerical analogue of the V . (V. VV) S t  term 
which arises when the divergence of equation (15) is taken. Both terms in equation (26) are 
simple to evaluate, since the divergence is taken over triangle centred quantities. The paths 
are the ‘surfaces’ bounding the vertex volume of Figure 6, where the normal is directed 
outward from the vertex. The Poisson equation (equation (26)) that resulted from this 
integration has two advantages. First it is derived from V z 4  = V . V 4  as in the continuum 
case. Secondly the left-hand side results in the more familiar second order accurate templates 
(such as the five-point formula) for the Laplacians for homogeneous fluids and regular mesh 
geometries. 

The free surface boundary conditions are particularly easy to employ in this formulation. 
The pressure at free surface vertices is taken to be the ambient pressure. Since the surface 
vertices are advanced with the local fluid velocities, the non-linear terms in the boundary 
conditions which are forced in the Eulerian representation are simply not present here. The 
boundary condition at the bottom of the region, the surface of the obstacle and any rigid 
walls are also simple to implement. Vertices at a wall are constrained to stay on the wall but 
may move parallel to  it. Therefore normal vertex velocities cannot arise, and pressures at the 
wall correctly evolve from the divergence equation. 

The difficult boundary condition proves to be the radiative condition at the sides of the 
mesh. As was mentioned earlier, the formulation of an accurate radiative free surface 
boundary condition remains a very difficult problem. It is particularly difficult for the case of 
a general restructuring Lagrangian mesh because of the vertices from which extrapolations 
must be made are themselves changing in both position and grid connectivity. Physical 
complexity presents an additional problem of separate, distinct flow regions which may 
advect through the boundary. For these reasons periodic boundary conditions are imposed 
instead at the sides of the mesh in this paper. Such a restriction necessarily alters the 
problem itself to one of flow over an infinite array of obstacles. Therefore, the computational 
domain must be enlarged to reduce the effect of reentrant reflected and transmitted waves. 
What is gained is an exact boundary condition, which is particularly useful in calculations 
designed to test the method. The effect of approximations at the outflow and inflow 
boundaries are avoided, and the numerical technique can be tested separately from a test of 
the boundary conditions themselves. 

In summary the finite difference formulas for SPLISH are derived using a control volume 
approach. Specifications of pressure at vertices leads naturally to the choice of positioning 
velocities at triangles. Although pressure gradients are constant over triangles, the resultant 
algorithms are expected to be nearly second order accurate since vertex velocities are 
derived from pressure gradient forces through sums about vertices, which in effect takes the 
central differences. The code has been tested extensively on  finite amplitude standing waves 
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Figure 7. The vertex cells associated with two vertices before and after a reconnection 

and has been shown to be basically second order accurate by the variation in period with 
mesh 

RESTRUCTURING THE GRID 

The derivation of the reconnection and vertex addition and deletion algorithms is accom- 
plished in the same manner through the control volume approach and the use of triangle 
velocities. The accuracy of a computer code which uses a reconnecting grid is determined by 
two aspects of the algorithms-how accurately post-reconnection physical variables are 
chosen and when the reconnections occur. As mentioned above, a reconnection offers the 
possibility of much less diffusion, since fluid passes through only one grid line for reconnec- 
tions, whereas four grid lines are involved in every vertex rezone movement. Every mesh line 
can be viewed as one diagonal of the quadrilateral formed by the triangles to  either side. A 
reconnection merely chooses the other diagonal. During a reconnection the smallest defina- 
ble cell is the quadrilateral, not the two triangles, and it is necessary to  ensure that 
quadrilateral properties are unchanged during a reconnection. That is, the quadrilateral is a 
control volume over which certain physical variables are conserved. As shown in Figure 7, a 
reconnection alters the vertex cells for each of the four quadrilateral vertices. To keep 
vorticity and divergence conserved the portions of the ingegrals J V . V d V  and J V x V . d A  
about each vertex which lie within the quadrilateral must be the same before and after the 
reconnection. Since there are four velocity components to  be specified after the reconnec- 
tion, it would seem possible only to  keep either the divergence or the vorticity about each 
vertex constant, but not both. However, the divergence and vorticity equations are not all 
independent and it is possible exactly to conserve both vorticity and divergence about each 
vertex with a unique set of triangle velocities. This same solution also conserves the 
quadrilateral velocity and has the added feature of time reversibility. Re-reconnecting a line 
yields the identical grid and physical variables both on vertices and triangles. This is 
extremely desirable since the basic finite-difference equations were also time reversible, as 
are the physical equations themselves. 

The question of when to  reconnect remains unresolved. As mentioned above, the accuracy 
of a general triangular mesh is diminished by narrow triangles. With reconnections, accuracy 
can be recovered by ensuring that small angles are preferentially eliminated. There are many 
ways of quantifying such an algorithm. The one we have chosen arises naturally from the 
pressure Poisson equation. Since the equation is solved in SPLISH by iteration, it is desirable 
that the convergence of the iteration be as rapid as possible. Mathematically, convergence is 
assured if the equation exhibits diagonal dominance. For a general triangle mesh diagonal 
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i i 

Figure 8(a). Definition of the angles O f  and 8- for the diagonal line drawn from j to E ;  (b). The angles Of and 6.. 
formed by connecting the other quadrilateral diagonal 

dominance is obtained only if all coefficients 

a = 1/2(cot 0- +cot 6") 

are positive, where 6" and 6- are defined in Figure 8a. For postive area triangles 6+ and 6- 
are both between 0" and 180", so that each term is negative only when 6" + 6- > 180", since 

sin (6" + 6-) 
2 sin 6' sin 6- 

a=- 

In SPLISH the reconnection algorithm is chosen to be exactly the algorithm needed to 
preserve diagonal dominance. If 6" + 6- is greater than 180", the grid line is reconnected as 
shown in Figure 8b. The new angles 0'" and 6'- must seem to less than 180" since 
6++ 6-+6"+ 6'- is the sum of the interior quadrilateral angles, which must be 360". 
Therefore the reconnection algorithm is unique as well as straightforward. It also preferen- 
tially eliminates small angles for triangles, since the diagonal is chosen which divides the 
largest opposing angles. 

Because the reconnect ion algorithms are specified to ensure diagonal dominance and 
eliminate small angle triangles, the second-order accuracy of SPLISH may be expected to be 
preserved. As yet, no test has been made of the accuracy of the reconnection algorithms for 
the complete range of gridding situations. This is mainly because reconnections cannot 
themselves ensure second-order accuracy, since flows near stagnation points must force 
narrow triangles, The reconnection algorithms have been tested extensively, however, 
through the Kelvin-Helmholtz instability. In the linear, non-linear and turbulent regimes, 
the algorithms have been shown to provide accurate calculations by comparisons with both 
theory and e~periment .~. '"  

The reconnection algorithm given in equation (28) can also be interpreted as a means of 
defining a triangular grid which connects vertices which are nearest neighbors. For a collection 
of vertices on a plane, a Voronoi mesh can always be constructed which consists of general 
polyhedra about each vertex. The sides of each polyhedron enclose the area closer to its 
central vertex than to any other vertex. A triangular mesh can be derived from the Voronoi 
mesh by connecting vertices that share a polyhedron side. This triangular mesh is a dual of 
the Voronoi mesh. The reconnection algorithm given in equation (28) enforces the condition 
that the triangular mesh used by SPLISH is always that dual mesh." Therefore the mesh 
always reflects the appropriate connections to define nearest neighbours. 

The derivation of the remaining grid restructuring algorithms proceeds in exactly the same 
manner as above. For vertex addition, satisfaction of conservation integrals is particularly 
simple. A vertex added at the centroid of a triangle subdivides that triangle into three 
smaller triangles. If the new triangle velocities are all the same as the velocity of the 
subdivided triangle, all conservation laws are automatically satisfied. Since the reconnection 
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Figure 9(a). Vertex 4 isolated within a larger triangle before its removal; (b). The larger triangle remaining after 
deletion of vertex 4 and three associated sides and triangles 

algorithm is also conservative, subsequent reconnections to other vertices ensure that the 
only effect of the addition is an increase in resolution. 

The case is not as obvious for vertex deletion. Reconnections can be used to surround any 
interior vertex within a triangle. It can be shown, however, that once the vertex is 
surrounded by a triangle, the motion of that triangle is not altered if the vertex is removed 
and the new larger triangle given a velocity which is the area-weighted sum of the old 
velocities, 

Such a substitution also conserves vorticity exactly, and effects a redistribution in accordance 
with area co-ordinates. Figure 9 illustrates the triangles before and after vertex removal. If t4 
is the vorticity about vertex 4 before removal, then the vorticity about each of the other 
three vertices is increased by an amount 6; where 

Here 5'1 + & + = e4 since A, + Aj + Ak =At. Therefore total vorticity is conserved and 
redistributed in a reasonable and natural manner. Since the behaviour of the divergence is 
governed by a similar set of equations and conservation of momentum is ensured by 
equations (29), the conservation of the flow variables is guaranteed and a loss in resolution is 
the primary effect of deletion.12 

The vertex addition and deletion rountines, together with the reconnection algorithms, are 
incorporated in SPLISH through driving routines which test for large or small grid lines and 
large, small or skewed triangles, as well as special tests at boundaries and interfaces. The 
resultant code automatically restructures the grid under constraints in the form of a 
maximum allowable skewness and maximum and minimum areas and line lengths. The 
complete routing has been tested using the Rayleigh-Taylor instability and in flows about 
hydrofoils. Preliminary results of these tests are extremely satisfying, providing the first totally 
Lagrangain calculations of these phenomena at long 

The tests performed using this code for the wave-structure interaction program are 
specifically aimed at the non-linear free surface effects to answer the question of whether the 
code does indeed still behave as a basically seond-order code and if the boundary conditions 
used thus far are realistic. In the following sections we will describe one way of initializing 
progressive waves which is simple and efficient, and subsequent tests of the code's behaviour 
by comparison with theory. 
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NUMERICAL RESULTS AND COMPARISON WITH THEORY 

The use of periodic boundary conditions restricts the calculational domain to an integral 
number of wavelengths, so that the domain represents one element of an array of identical 
domains. For many conditions of wave motion this yields a quite realistic situation, and there 
is no concern for numerical damping at radiative boundaries. This restriction on the problem 
has in fact permitted considerable progress to be made in the numerical calculation of 
free-surface, progressive waves, even for cases with obstacles such as bottom seated 
half-cylinders in the flow. The present findings show that when wave reflection from an 
obstacle is small, the periodicity of domains does not prevent good agreement between 
numerical results, experimental data and theoretical results. 

Calculations with SPLISH for progressive surface waves in a uniform depth ocean have 
given good agreement with classical wave theory for the wave period. The calculation is 
started by a sinusoidal pressure pulse on the free surface which initiates a standing wave. At 
the quarter period of the standing wave ( t  = T/4 s) a second pulse (phase shifted a quarter 
wave length) is applied to form the progressive wave. This initialization procedure may not 
be the most appropriate, especially when an obstacle is in the flow field, but it is simple, easy 
to apply, and exhibits good numerical stability for standing waves7 and for progressive waves 
in a straight channel. Also, it works well with the periodic boundary conditions and 
introduces minimal grid distortion and variation in the triangle areas. Previous calculations 
with SPLISHY3 had given wave period values for a standing wave which agreed very well 
with theory. The period converged to the theoretical value as the grid step size was reduced. 

The triangular grid for the SPLISH code is illustrated in Figure 10 for a case of wave 
motion (from left to right) in a uniform depth channel. Some triangle reconnections have 
taken place as may be seen by the departures from the initial regular grid. Also, under the 
periodic boundary conditions, some triangles have been moved from the right side of the 
domain to the left side in order to keep the domain compact. For wave flow over a bottom 
seated half-cylinder, an initial automatic grid adjustment makes room for the half-cylinder 
by shifting upward the triangle vertices above it. 

1.5 I 

Low reflection wave flow over a half-cylinder 

The configuration which we consider is waves moving over a bottom seated half-cylinder, 
which might correspond to a half buried pipe or a storage tank on the ocean floor. However, 

1.6 

Y 

E - 
0 X 2.5 

Figure 10. An example of a SPLISH-generated computational grid 
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Figure 11. The surface contour and the bottom pressure from a numerical calculation of the wave flow over a 
bottom seated half-cylinder 

with periodic boundary conditions, the numerical simulation actually corresponds to an array 
of pipes which are spaced one or more wavelengths apart. There are combinations of 
wavelength, depth, and cylinder radius for which only a small amout of the incident wave is 
reflected by the half-cylinder. Conditions were chosen so that the reflection coefficient 
R = 0.03 based upon a linear wave Green's function formulation.' Under these conditions, 
neighbouring half-cylinders should have negligible effect on the flow. A series of calculations 
was made for these low reflection conditions. 

Figure 11 shows the free surface contour and the resultant bottom pressure Pb at one 
instant in the passage of a wave (from left to right) over a half-cylinder (radius a = 0.5 m) in 
a channel (depth d = 1 m) for a wave length h = 2-5 m. The finite amplitude of the wave 
( H  = 0.044 m, from the undisturbed free surface) causes only a very small deviation from a 
sinusoidal surface shape in spite of the presence of the bottom seated half-cylinder. Note that 
the pressure scale increases downward. Since the calculation was started from still water, the 
pressures at step 1 correspond to the hydrostatic pressure on the channel bottom and on the 
surface of the half-cylinder. At step 25 the wave gives an increased pressure on the left side 
of the half-cylinder and a reduced pressure on the right side. This is responsible for a net 
force (at this instant) from left to right. At other steps in the calculation, the pressure 
fluctuation accurately follows the passage of peaks and troughs of the wave as will be shown. 

There is also a depth dependence of the pressure fluctuation. As the crest and the trough 
of the wave pass, the pressure fluctuation on top of the half cylinder (at a depth of 0-5 m) is 
approximately twice that on the channel bottom (at a depth of 1-Om). At intermediate 
depths (i.e. along the sides of the cylinder) the magnitude of the pressure fluctuation is 
between that on the channel bottom and that on the top of the cylinder. 

In  Figures 12 and 13 fluctuation in Pb, i.e. AP, is normalized by its maximum value 
(AP,,,) which occurs at the top of the cylinder as the wave crest passes by. Figure 12 shows 
the pressure distribution around the half-cylinder at times t = 1.28 and t = 1.92 s which are 
the instants when the wave crest and trough pass over the half-cylinder. Figure 13 shows the 
pressure distributions around the half-cylinder at t = 0.96 s and at t = 1.64 s which corres- 
pond to times when the wave crest is first to the left of the cylinder and then to  the right of 
the cylinder. In these two figures the values of A P  from the SPLISH numerical calculations 
are shown by the open symbols. The solid and dashed curves shown in these figure are the 
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Figure 12. A comparison of the distribution of pressure fluctuations around the half-cylinder from an asymptotic 
fifth-order wave theoryi4 and from a SPLISH calculation, for the wave crest and trough passage (wavelength 

A = 2.5 m, depth d = 1 m, radius a = 0.5 m) 
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Figure 13. A comparison of the distribution of pressure fluctuations around the half-cylinder from fifth-order wave 
theory and from a SPLISH calculation, for the wave crest to the left and right of the half-cylinder (wavelength 

A = 2.5 m, depth d = 1 m, radius a = 0.5 m) 
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Figure 14. A comparison of the pressure time history at the top of a bottom seated half-cylinder from a SPLISH 
calculation and from fifth-order wave theory (wavelength h = 2.5 m, depth d = 1 m, radius a = 0.5 m, wave 

amplitude H = 0.038 m) 

values of AP obtained for these conditions using the approach of Chakrabarti and Naftzger14 
which was based on Stokes' fifth-order wave theory and the assumption that the effect of 
the free-surface on the reflected wave potential could be neglected. For the present 
low-reflection conditions (with a reflection coefficient of 3 per cent) such an assumption is 
reasonable. For these conditions the SPLISH results are in good agreement with the 
fif t h-order theory results. 

The time history for the pressure (in kiloPascals or kN/m2) at a vertex on the top of the 
half-cylinder is shown in Figure 14. The solid curve shows the SPLISH data and the open 
symbols are values obtained using a full fifth-order solution obtained by Chakrabarti and 
Naf t~ger '~ .  The pressure here represents the actual gauge pressure that might be measured. 
The wave amplitude was taken to be H = 0-038 m for the fifth-order calculations, and the 
agreement between the numerical calculations and the fifth-order calculation is quite good. 
With the finite grid size employed here the period given by the numerical results is about 4 
per cent greater than that from the theoretical dispersion relation, so that the theoretical and 
numerical results shift slightly relative to each other with time. From fifth-order theory 
T =  1.269 s and from linear theory T = 1.274, whereas SPLISH gives a value of T = 1.30 s 
based on the intervals between maxima or between minima in the pressure-time history. 

The forces and pressures on the half-cylinder are the principal results of the numerical 
calculations, but at times the quality of the numerical solution is not shown by the pressure 
and force data. Plots of the Lagrangian particle paths have proven to be a very useful 
diagnostic aid for determining the quality of the solution and for examining the physical 
mechanism in some wave flow situations. Figure 15 shows the Lagrangian paths of three 
surface vertices, in Figure 15(a) the vertex initially at x-Om, in 15(b) the vertex at 
x = 0.6 m, and in 15(c) the vertex at x = 1.2 m. The particle paths begin at step 11 after the 
standing wave is fully formed and the second pressure pulse has been applied. The presence 
of the half-cylinder in the flow seems to affect the path of the surface particle above it only 
slightly. A larger effect would be seen for a larger wave amplitude or for vertices nearer to 
the cylinder. The particle paths in Figure 15 also exhibit a slight decrease in amplitude with 
time. This decrease in wave amplitude (and thus wave energy) is not due to viscous effects in 
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Figure 15. Particle paths on the free surface from a numerical calculation of wave flow over a bottom seated 
half-cylinder. Vertices were initially at x = 0.0 m, x = 0.6 m and x = 1.2 m (wavelength h = 2.5 m, depth d = 1 m, 

radius a = 0.5 m) 

the governing equations, but it is caused by an effective dissipation of energy due to the 
incomplete convergence of the successive-over-relaxation (SOR) method used for the 
solution of the Poisson equation for the pressure. 

Even though there is some loss of energy in the numerical solution (due to  the incomplete 
convergence of the SOR method), the Lagrangian particle paths clearly show that, for these 
low wave reflection conditions, SPLISH is generating a stable, well-behaved solution for the 
surface wave motion over the half-cylinder. The particle paths seem to indicate that the wave 
reflection from the half-cylinder is sufficiently low that it neither adversely affects the quality 
of the solution nor significantly changes the physical situation which is being modelled 
numerically. We consider in the next section a case in which the amount of wave reflection is 
significant. 
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Figure 16. A comparison of the pressure-time history at the top of a bottom seated half-cylinder from a SPLISH 
calculation and fifth-order wave theory calculation for high reflection wave flows (wave length A = 8.4 m, depth 

d = 1 m, radius a = 0.667 m wave amplidute H = 0438 m) 

High reflection wave flow over a half-cylinder 

Numerical calculations also have been performed with SPLISH for a case with significant 
wave reflection. For this case the depth d=l .Orn ,  the radius a=O.667m and the 
wavelength h = 8-4  m. From the results of Naftzger and Chakrabarti' the wave reflection 
coefficient R = 0.4 and the reflected wave has 16 per cent of the energy of the incident wave. 

Surprisingly, some of the results from the SPLISH calculation show little adverse effect 
from the wave reflection. For example, the time history of the pressure at a point on top of 
the half-cylinder, shown in Figure 16, agrees quite well with an earlier asymptotic fifth order 
wave theory m0de1.I~ The method is asymptotic in the sense that the water depth is 
sufficiently large that the effect of the free surface boundary on the diffracted wave can be 
neglected. This approximate method was selected because of its simplicity and relative 
accuracy for the conditions tested. Other numerical results for these conditions (not shown 
here) agree rather poorly with the theoretical and experimental results. This disagreement 
appears to arise from two factors. The first is due to a mismatch in timing for this case of the 
second pressure pulse initializing the calculation. The second is that boundary conditions 
other than the periodic ones used are needed for cases with significant wave reflection. The 
periodic boundary conditions allow the reflected wave to reenter the calculation instead of 
radiating outward from the obstacle. For high wave reflection, the disturbance to the flow 
field is significant and the intended physical situation is not properly modelled numerically. 

In the above discussion we have only compared the results obtained with SPLISH with 
results from classical linear and fifth-order wave theories. Even though most of these 
comparisons showed good to very good agreement, it is also appropriate to compare the 
calculations with experimental data. This is done in the next section. 

COMPARISONS WITH EXPERIMENTAL DATA 

Several wave motion experiments were performed in the NRL wave channel with a bottom 
seated half-cylinder so that actual pressure measurements could be compared both to  the 
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present numerical results and to the previous work of Chakrabarti and Naftzger'>l4 A 1.07 m 
(3ift) diameter half-cylinder, which spanned the entire width of the channel, was placed 
about one-half of the channel's length from the mechanical wavemaker. At the other end of 
the wave channel a sloping, porous beach with a rubberized horsehair blanket served to 
absorb nearly all of the incident wave energy. Nineteen equally-spaced (A$ = loo) pressure 
taps were located around the circumference of the half-cylinder at its midsection. The 
individual taps were connected to a differential pressure transducer by a rotary pressure 
switch. The wave height along the channel was obtained from several traversing capacitance- 
type wave gauges. Calibrations were performed on all sensors before and after each test 
series to ensure that the overall accuracy of the measurement system remained well within AZS 
per cent. The pressure and waveheight signals were digitized and processed by means of a 
Hewlett-Packard 5420A Digital Signal Analyzer. The experimental systems and methods are 
discussed further in a related NRL r e p ~ r t . ~  

The cylinder reflection coefficient R, defined as the ratio of reflected to incident wave 
amplitudes, was obtained for a range of wavelengths and water depths. Reflection coeffi- 
cients were obtained using a modified form of the method, introduced by Ursell, Dean and 
YuI5 based upon modulations of the waveheight along the channel. The results of these 
measurements are plotted in Figure 17 against the wavenumber ka = 2va/h and for several 
values of the relative water depth d/a. Also shown in the Figure (as solid lines) are 
theoretical values based on linear theory which were calculated by Naftzger and Chak- 
rabarti.' There is general agreement with the observed cylinder reflections. 

It should be noted, however, that some care was taken to avoid finite amplitude effects 
through the use of small wave steepness ratios (H/h 50 -05) .  The wave steepness values 
during the d/a  = 1.25 tests were reduced further, typically to less than 0.02, in order to avoid 
second harmonic wave generation at the cylinder. This non-linear effect is associated with 
the finite waveheight being a significant fraction of the finite water depth at the top of the 
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Figure 17. Experimental (0, 0,Cl) and computed (-) values for the wave reflection coefficient of a bottom-seated 
half cylinder. The computed values were obtained using linear wave Green's function approach by Naftzger and 
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Figure 28. A comparison 
distributions on a bottom 

of theoretical,'4 numerical, and experimental results for selected instantaneous pressure 
seated half-cylinder in waves, for wave crest and trough directly over the cyclinder (low 

reflection wave flow, dla = 2.0, ka = 1.25, R 5 0.05) 

cylinder. The second harmonic wave could be seen as the formation of a secondary crest 
when a trough was over the cylinder. 

A rule of thumb emerged from this observation and from several wave gauge spectral 
records wherein second harmonic amplification did not occur for waveheights less than about 
f of the water depth over the cylinder. This criterion for the validity of the analytical method 
is more stringent than the one originally proposed by Naftzger and Chakrabarti. The onset 
and form of the non-linearity i s  the subject of a recent investigation.'6 

From the range of water depths and wavelengths shown in Figure 18, two cases were 
selected for detailed pressure studies and for comparisons with the theoretical and numerical 
results. The first is a relatively low reflection case (&a = 2 4  and ka = 1.25). so that 
R C= 0.05. This represents a situation where good agreement between the three sets of results 
was expected. The second case is a relatively high reflection condition (d/a = 1-5, ka = 0.5, 
T-0.4) which was selected as a significant test for SPLISH with regard to the use of 
periodic boundary conditions in the code. 

Low reflection case 

A comparison between the experimental results and a linear approximation to the fifth 
order model14 was obtained. This approximation was selected for the comparison because of 
its simplicity and relative accuracy. The theoretical and experimental results agreed well 
except near the intersection of the half-cylinder sides and the wave channel floor. These 
differences could be a consequence of a small gap which existed between the bottom of the 
half-cylinder and the wave channel. 
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Figure 19. A comparison of linear wave t h e ~ r y , ' ~  numerical, and experimental results for selected instantaneous 
pressure distributions on a bottom seated half-cylinder in waves, for crest to the left and the right of the 

half-cylinder (low reflection wave flow, d/a = 2.0, ka = 1.25, R ~ 0 . 0 5 )  

Since the numerical results are Lagrangian whereas the theoretical and experimental 
results are Eulerian, the simplest format for comparing all three is the pressure distribution 
around the cylinder at selected times in the wave cycle. Figures 18 and 19 present several 
such comparisons for the experimental conditions cited above. The three sets of results 
compare well except near the bottom of the cylinder. Although the discrepancy appears to 
be small in such a plot the effect on a measured horizontal component of the wave force can 
be significant. 

High reflection case 

Similar results and comparisons for a relatively high reflection case (dla = 1-5, ka = 0.5, 
R -0.4) are shown in Figures 20 and 21. As before, the pressures are normalized by the 
magnitude at the top of the cylinder. In this case, however, the maximum pressure 
fluctuation occurs on the upstream side of the cylinder where both the incident and reflected 
waves are present, The experimental pressures shown in the Figures were obtained from the 
data after a correction for the additional standing waves in the laboratory channel. This 
correction, often large, neglected secondary reflections and was based on linear wave theory 
which may be responsible for all or part of the discrepancies between results. The computed 
results shown for the method developed by Naftzger and Chakrabarti were provided by 
them (R. A. Naftzger, private communication, 1980). 

In spite of the difficulties implied, above, the agreement between the linear theory and the 
experiments is relatively good. The previously mentioned restriction on wave amplitude 
ought to be reiterated. The SPLISH results show the effect of the periodic boundary 
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Figure 20. A comparison of linear wave theory,' numerical, and experimental results for selected instantaneous 
pressure distributions on a bottom seated half-cylinder in waves, for wave crest and trough directlv over the cylinder 

(high reflection wave flow, d/a = 1.5, ka = 0.5, R -0.4) 
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Figure 21. A comparison of linear wave theory,' numerical, and experimental results for selected instantaneous 
pressure distributions on a bottom seated half-cylinder in waves, for wave crest to the left and the right of the 

half-cylinder ( d / a  = 1 .5, ka = 0.5, R -0.4) 
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conditions and perhaps also of the improper wave initialization. There is less satisfactory 
agreement between the numerical calculations, the experimental data and the theoretical 
results for conditions of high wave reflection. 

SUMMARY AND CONCLUSIONS 

A finite-difference numerical method for solving the governing equations of motion for 
inviscid, irrotational flow with a free surface using a Lagrangian triangular grid has been used 
and shown to yield reasonable results. Calculations for progressive surface wave motions 
have given results for the wave period, the drift velocity and the surface particle movements 
which are in good agreement with results obtained from classical wave theories. 

Calculations for the passage of waves over a submerged obstacle are encouraging and 
show some promise of providing practical results over a relatively wide range of wave 
conditions. These calculations demonstrate the adaptability which the triangular grid pro- 
vides. The advantages of the Lagrangian formulation are shown in that the grid conforms to 
the fluid area and that no interpolation is needed to locate the free surface or the surface of 
the submerged obstacle. 

Two cases of wave motion over a submerged, half-cylindrical obstacle have been consi- 
dered. The results for the low wave reflection case indicate that, even with the periodic 
boundary conditions, a code such as SPLISH can be employed with reasonable confidence to 
calculate the motion of waves over obstacles (thus wave-structure interactions). However, 
for cases with significant wave reflection from an obstacle, continuative or radiative boundary 
conditions are necessary, since the periodic boundary conditions lead to the simulation of a 
flow quite different from that desired. Also, alternative techniques for initiating the traveling 
surface wave seem to be required. 
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